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STRONGLY REGULAR GRAPHS 
DEFINED BY SPREADS 

BY 

WILLIAM M. KANTOR' 

ABSTRACT 

Spreads of finite symplectic, orthogonal and unitary vector spaces are used to 
construct new strongly regular graphs having the same parameters as the 
perpendicularity graphs of the underlying vector spaces. Some of the graphs are. 
related to partial geometries, while others produce interesting symmetric 
designs. 

1. Introduction 

Let V be a vector space over GF(q), equipped with a symplectic, orthogonal 

or unitary geometry. A spread of V is a family E of maximal totally isotropic or 
singular subspaces which partitions the set P of totally isotropic or singular 
points. Let m = dim M for M E E, and assume that m -> 3. Using E, we will 

construct a strongly regular graph G(E). The parameters of G(E) are the same as 
those of the classical strongly regular graph G(V) = (P, • where • denotes the 
relation "distinct but perpendicular"; however, the strongly regular graphs G(X) 

and G(V) need not be isomorphic. 

When V has type f~+(2m, 2) or f~+(2m, 3), G(E) is the line-graph of the partial 

geometry found by DeClerck, Dye and Thas [2, 14]. When V has type 

Sp(2m, q), G(E) determines a symmetric design having the same parameters as 

PG(2m - 1, q). Our goal is not just to define these graphs, partial geometries and 

designs: we will also indicate some of their properties. 
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2. Spreads 

We begin by summarizing some of the properties of V which will be needed 

later. Proofs can be found in Dieudonn6 [4]. 

If V is as in w then it is equipped with a form (bilinear, quadratic or 

hermitian) and a notion of perpendicularity. A subspace on which the form 

vanishes is called totally isotropic (for symplectic or unitary V) or totally singular 
(for orthogonal V); such a subspace is perpendicular to itself, but the converse is 

false for orthogonal geometries in characteristic 2. If X is any subspace then 

dim X • -- dim V - dim X; in particular, if X < X • then dim X =< �89 V. All 

maximal totally isotropic or singular subspaces have the same dimension 

m _-< �89 V. 

Throughout this paper, V, E, P, G(V) and m will have the same meaning as in 

w tPI = (q"§ + 1)(q" - 1)/(q - 1), where m and e are related to V as in the 

following table: 

TypeofV Sp(2m, q) fl(2m+l,q) f~+(2m, q) fl-(2m+2, q) U(2m, q ''2) U(2m+l,q m) 

0 0 -1 1 -�89 �89 

In [4] the orthogonal geometries of type fl+(2m, q) and fF(2m + 2, q) are those 

having maximal and non-maximal index, respectively. 

By definition, IPI = IEl(q" - 1)/(q - 1). Consequently, IEI = q"+" + 1. 

We are only interested in the case m _-__ 3. The only spaces in which spreads are 

known to exist are then as follows (Dillon [5]; Dye [6]; Thus [13]; Kantor [9, 

101): 
Sp(2m, q). All m,q. 
l~(2m + 1, q). All m if q is even; m =3,  q = 0  or 2 (rood 3). 

l~+(2m, q). All even m if q is even; m =4,  q = 0  or 2 (rood 3). 

I~-(2m +2, q). All m if q is even. 

Examples of spreads in some of these cases will be given later. No examples 

exist in fY(2m, q) spaces if m is odd. Nothing is known about existence or 

nonexistence for unitary spaces. 

3. The graphs G(E) 

Let V, P and E be as before. 

Let l~ be the set of all hyperplanes of members of E. If X E f~, let E(X) denote 

that member of E containing X. 
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Wri te  X ~ Y C : ~ x n Y ~ 0 ,  where  X, Y E ~ a n d X ~ Y .  

Set G(E)  = (f~, ~ ). 

THEOREM 3.1. G ( V )  and G(E)  are strongly regular graphs having the same 

parameters. 

PROOF. Clearly,  IPI = I ~ l ( q  m - 1 ) / ( q  - 1 )  = I f ~ l .  I t  i s  wel l -known that  G ( V )  

is s t rongly regular;  its p a r a m e t e r s  are 

[PI,  k = q ( q , . - ~ -  1)(q . . . .  l +  1)/(q - 1), 

h = q - 1 + q ~ ( q , . - : -  1)(q . . . .  2+ 1)/(q - 1), /z = (q , . - '  - 1)(q,.+'-~ + 1)/(q - 1). 

We  will check that  G(~)  is a s t rongly regular  graph with these pa rame te r s ,  

p roceed ing  in several  steps. The  let ters X, Y and Z will always deno te  m e m b e r s  

of 1-/, while x and y will be long to P. 

(1) If E ( X ) ~ M E E ,  then X •  For,  d i m X  l = d i m V - d i m X =  

dim V - (m - 1), so that  d i m ( X  l n M )  = (dim V - (m - 1)) + m 

- d i m ( X  l, M )  _-> 1. The  maximal i ty  of m now shows that  d i m ( X  1 O M )  = 1. 

(2) If X -  Y then Y - X .  For,  this is clear if E ( X ) =  E(Y) ,  so assume that  

E ( X ) ~ E ( Y ) .  Set x = X A Y •  and y = X  •  Then  y E X  ~ < x ~ ,  so 

y ~x~n(x~nE(Y))=x~n Y. 

(3) Le t  X E ~ .  Clearly,  X - Y wheneve r  X ~  Y < E(X) .  Le t  

M E E - {E(X)}, and set y = X l O M. Then  X - Y wheneve r  y E Y < M. Thus,  

G(E)  has valence  (q"  - q) / (q  - 1) + q"+" �9 (qm-~ _ 1)/(q - 1) = k. 

(4) Let  X - V with E ( X )  = E(Y) .  If Z ~  X, V and Z < E ( X )  then Z - X, Y. 

This accounts  for  ( q " - 1 ) / ( q -  1 ) - 2  m e m b e r s  of l~. We  now search for  all 

Z ~ X, V with E ( Z )  ~ E(X) .  

Let  M E E - { E ( X ) } .  Fo rm X l n M = x  and Y ~ A M = y .  If Z < M ,  then 

Z ~ X ,  Y precisely when  x , y  E Z. This accounts  for  qm+E (q , , -2_ 1 ) / ( q -  1) 

m e m b e r s  of fl .  

Thus,  there  are q"*E (q,.-2 _ 1)/(q - 1) + (q '~ - 1)/(q - 1 ) -  2 = h subspaces  

Z E f~ such that  Z - X, Y. 

(5) Let  X - Y with E ( X )  ~ E(Y) .  If Z ~  X and V~ n E ( X )  E Z < E(X) ,  then  

Z ~ X, Y. Revers ing  the roles of X and Y, we obta in  2(q m - ~ -  q)/(q - 1 )  such 

subspaces  Z ~ X, Y. 

Next ,  let M E E - { E ( X ) , E ( Y ) } ,  and set x = X • O M and y = Y~ n M. If 

Z < M, then  Z ~ X, Y precisely when  x, y ~ Z. 

If x = y then x E (X, Y)~. Then  (x, X, X • n Y) is .contained in P and has 

d imens ion  _-> m, so that  x E (X, Y) I  O (X, X • O Y) = ( X  • n Y, x n Y~). Con-  
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versely, each of the q - 1  members of E-{E(X),~s meeting the latter line 

produces an instance of x = y. Consequently, exactly (q - 1). ( q ' - ~ -  1)/(q - i) 

subspaces Z - X ,  Y arise in this manner. Similarly, if x ~  y we obtain 

(q . . . .  q) .  ( q " - 2 - 1 ) / ( q -  1) subspaces Z. Thus, the number of Z -  X, Y is 

2(q m-' - q)/(q - 1) + (q - 1)(q m ' - 1)/(q - 1) + (qm+, _ q ) ( q m - 2  _ 1)/(q - 1) = h. 

(6) Let X ; z y .  If Y ~ A E ( X ) < Z < E ( x )  then Z - X , Y .  This produces 

2(q ' - ' -1 ) / (q-  1) subspaces Z ~ X, Y lying in Z(X) or E(Y). 

If M E E - { E ( X ) , E ( Y ) } , s e t  x = X  l n M  and y = Y I n M .  If Z < M ,  then 

Z ~ X, Y precisely when x, y E Z. 

Suppose that x = y. Then x E X •  Y~=(X,  Y)~. This is a nonsingular 

subspace of dimension dim V - 2 ( m -  1). Checking all cases, we find that it 

contains exactly q"*~+ 1 members of P. This produces 

subspaces Z. 

Finally, if x / y  

X, Y. Since 

( q ~ * ' - l ) - ( q  ~ - l -  1)/(q - 1 )  

we obtain (q . . . .  q,+,). (q,~-2_ 1)/(q - 1) subspaces Z 

iz = 2(q"- '  - 1)/(q - 1)+ (q'+' - 1)(q"- '  - 1)/(q - 1) 

+ (q . . . .  q,+,)(q,,-2 _ 1)/(q - 1), 

this completes the proof of the theorem. 

DEHNIT1Or~S 3.2. (i) If x E M E E  then M * = { Z E f ~ I Z < M }  and x * =  

{Z EfIIx  E Z < M } .  

(ii) E* = {M* I M E E}. 

(iii) Let X - Y .  If Y.(X)= ~(Y), set X Y = { Z ~ f l I X N  Y<Z<E(X)};  if 

~(X) ~ :~(Y), set 

X Y = { Z E I ~ [ Z N ( X A  Y •  Y ) / O , Z •  Y~,x•  v)}. 

In the latter case, every member of E meeting (X n y l ,  X•  y )  nontrivially 

contains a unique member of X Y  (compare step (5) of the proof of (3.1)). Thus, 

I XYI = q + 1 in any case. 

(iv) If X - Y ,  L (X ,Y)={X,Y}U{ZEf~  I W E I ~ - { Z }  and W - X , Y  
w ~ z } .  

(v) Let X ~  Y. If E ( X ) = E ( Y ) ,  set Lo(X, Y )=XY;  if Z ( X ) ~ ( Y ) ,  set 

Lo(X,Y)={X,Y}U{ZEf~IWEf~-{Z} ,  W - X , Y ,  and W l > X ~ n  Y or 

X N  Y~- ~ W~Z} .  
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Evidently, XY, L(X, Y) and Lo(X, Y)  are all versions of "lines". Only 

L(X, Y) depends strictly upon the graph G(E). In computational situations, 

Lo(X, Y) is easier to deal with than L(X, Y). 

These definitions are related, in view of the following simple lemmas. 

LEMMA 3.3. (i) ~* is a partition of ~ into maximal cliques. 

(ii) If ~,(X) ~ M E ~ then {Z E M* IX  ~ Z} = x* for a unique point x of M. 
Thus, the subsets x* of M* can be recovered from G(E), so that each clique M* 

inherits from G(E) a natural structure as a projective space PG(m - 1, q). 

(iii) If  X ~ g and ~(X) = E(Y), then L (X, Y) = Lo(X, Y) = XY. 

(iv) If  X ~ Y then L (X, Y) C_ Lo(X, Y) C_ XY.  

LEMMA 3.4. Assume that ~* contains every clique C of size (q m _ 1)/(q - 1) 

such that X, Y E C and X ~  Y imply that L(X, Y)C C and [L(X, Y)I = q + 1. 

Then Aut G(E) is induced by the group of automorphisms of G(V) which send 

to itself. 

PROOF. By (3.3i) and hypothesis, G(E) uniquely determines E*. Then (3.3ii) 

can be used to recover G(V) from G(E): simply interchange the roles of P, E and 

t ,  E* in the construction described at the beginning of this section. 

REMARKS. Aut G(V) is well-known (Dieudonn6 [4, ch. II, w it consists of 

all invertible semilinear transformations of V which preserve the underlying 

form projectively. 

It seems likely that the hypothesis of (3.4) holds whenever V does not have 

type fl+(8,q) (compare (4.1), (4.2)). In those cases we have computed, 

[ L (X, Y) [ = 2 whenever X - Y and ~(X) # E(Y); in fact, except in the situation 

of the next lemma it appears that [Lo(X, Y)[ = 2 when X(X) ~ E(Y). 

LEMMA 3.5. Let V have type ~+(2m, q). 

(i) If x E M E ~, then x* lies in exactly two maximal cliques: M* and 

C(x*)= x* U{x • n N [ N  EE-{M}} .  

(ii) If  X ~ Y then [Lo(X, Y)[ = q + 1. 

PROOF. (i) Let S be a clique containing x*, and let Y ~ S - M*. If X ~ x* 

then Y~ n M ~ X, and hence Y• n M = x. Thus, S C_ C(x*). 
Let Y, Z E C ( x * ) -  x*, Y ~  Z. Then V = (~(Y), E(X)). Let x E (y, z) with 

y ~ E(Y) and z E ~(Z). Then (y, z) is totally singular since it has at least three 

singular points. Then y E x ~ N ~(Y) = Y, while x, z E Z ~, so that y ~ Y N Z ~. 

Thus, C(x*) is a clique. 
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(ii) We may assume that E(X)r  Set x = X N  Y~, and let 

Z E X Y - { X ,  Y}. If W r  X, Y and W < x • then Z, W E C(x*) and hence 

W - Z. Thus, X Y  = Lo(X, Y). 

4. Are the graphs new? 

This and the next two sections are concerned with special cases of the 

following 

CONJECTURE 4.1. G(~) ~ G ( V ' )  for some symplectic, orthogonat or unitary 

space V' if, and only if, V has type fl*(8,q). 

If G(~) ~ G(V')  then G(V)  and G(V')  have the same parameters. Thus, V' can 

be taken to be V except perhaps if V has type Sp(2m, q) or ~(2m + 1, q) with q 

odd (see (4.6) for those cases). 

PROPOSITION 4.2. If V has type l)*(8, q) then G(V)---G(E). 

PROOF. The totally singular 4-spaces of V fall into two classes, two 4-spaces 

lying in the same class if and only if their intersection has even dimension 

(Dieudonn~ [4, pp. 50, 65]). Each class contains [Pt subspaces. If X E f~, then X 

lies in exactly two totally singular 4-spaces: E(X) and M(X), say. Since E lies in 

one class, M = {M(X) [ X E f~} lies in the other. A class has size ]P = I =- I Mi. 
Thus, M is an entire class. 

If X - Y and E(X) = E(Y), then M(X)  n M(Y)  is the line X n Y. If X - Y 

and E(X) ~ E(Y) then M(X)  n M(Y)  = (X O Y~, X ~ O Y). Consequently, a 
triality map (Tits [15]) sending M to P induces an isomorphism G(E)~  G(V). 

DEFINmON. An ovoid of V is a set of qm+, + 1 points in P, no two of which 

are perpendicular. 

If O is any set of pairwise nonperpendicular points of P, by counting the 

pairs (x, E )  with E a totally isotropic or singular m-space and x E O n E we 

find that IO _--< q"+~ + 1. Thus, ovoids have maximal size for such sets of points. 

Moreover  O is an ovoid if and only if every totally isotropic or singular m-space 

of V meets O. Consequently, if O is an ovoid and y E P - O ,  then Oy = 

{(x, y)/y Ix E O O y~} is an ovoid of y~/y (Thas [13]). 

Tt~EOREM 4.3. V does not have an ovoid if V has type (i) Sp(m,q)  or (ii) 

fl+(2m, 2), m > 4. 

PROOF. (i) This is due to Thas [13]. 
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(ii) Let O be an ovoid. Since Oy is also an ovoid for y E P - O, we may assume 

that m = 5. Now Oy is an ovoid in an 1-1+(8, 2)-space, and hence is unique up to a 

change of coordinates (Dye [6], Thas [13]). Thus, Oy can be described as follows. 

Take Z~, with standard basis e l , " - ,  eg. Set Q(ei)= 1 and (ei, ej)= 1 for i F  j. 

This produces a quadratic form on Z~, with radical spanned by w -- E~ e~. We can 

identify y ~/y with {E 9 a~e, 15,9 a, = 0} and Oy with {(w + e,) [ i = 1 , . . . ,  9}. Note 

that (w + e, I i = I , .  �9 6) �9 = (e7 + es, e8 + eg) has no singular points. 

Now count in two ways the number N of pairs (y,S) with y E P - O ,  

S C O f q y  �9 and I S I = 6 .  On the one hand, 

0  )(961 
Next, fix S C O. Then dim(S) =< 6, so there is some y ~ ( P -  O) n (S)l. Projecting 

into yi /y  and applying the preceding paragraph, we find that iS) has type 
IY(6,2). Thus, I ( P - O ) N  (S) ~ = 22+ 1, and N = (167)5, which is absurd. 

PROPOSmON 4.4. Assume that G ( ~ ) ~  G(V') for some V', and that V' has 

type ll*(2m, q), U(2m, q 1/2) or f~(2m + 1,q). Then V contains an ovoid. 

PROOF. If q~ : G ( s  is an isomorphism, then I~'= (~*)~ is a spread of 

V' (cf. (3.3)). Let H be a nonsingular hyperplane of V' (of type 1~ (2m, q) if V 

has type l~(2m + 1, q)). Then I~" = {E n H ]E E Y'} is a spread of H, since each 

subspace E n H has dimension m -  1. By (3.3ii), E n H = (x*)* for some 

x E P. Let O be the set of I~'[ points x obtained in this manner from H. 

We claim that O is an ovoid. Clearly I Oi = I ' s l= q"§ + 1. Assume that x and 

y are distinct perpendicular points of O. Let y E Y < x �9 Then Y ~ X for all 

X E x*, so that Y* is perpendicular to every point of (x*)* = E Cl H. Since 

Y* E (y*)* < H, this is impossible. Thus, O is an ovoid. 

Note that the different choices for H produce many ovoids. Conceivably, 

these can be used to obtain further information. 

COROLLARY 4.5. G('2)NG(V') for all V' if g has type ~*(2m,2), m >4 ,  or 
Sp(2m, q) with q even. 

PROOF. This follows from (4.3) and (4.4), since an Sp(2m, q) geometry is 

essentially the same as an ll(2m + 1, q) geometry when q is even. 

REMARK 4.6. Suppose that G(~)----G(V'). If q is odd and V' has type 

l~(2m + 1, q), then so does V by (4.3) and (4.4). If q is odd and V' is symplectic, 

then so is V: if X and Y are nonadjacent in G(E) then there are q - 1 subspaces 

Z / X , Y  such that W ~ X , Y = }  W ~ Z ;  as in w this implies that 

Z C/(~(X) n Y~, 1~(Y) n x ~) r o, and hence that V is not orthogonal. 
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5. Symplectic spreads 

Assume that V has type Sp(2n, qe), and that ~' is a spread of V. Set 

F = GF(q ' )  and K = GF(q). 

If (u, v) is the symplectic form for V, and T : F - K  is the trace map, then 

T(u, v) defines a symplectic form over K, and turns V into an Sp(2en, q) space. 

Moreover, E' becomes a spread ~ of totally isotropic en-spaces. (Thus, we 

regard E as consisting of K-subspaces and ~' as consisting of F-subspaces.) If 

e => 3, we can form the strongly regular graphs G(E) and G(~'). These graphs do 

not even have the same parameters. Thus, extension fields produce large 

numbers of graphs. 

If X E l'l, let FI(X) consist of X and all vertices of G(E) joined to X. Then lq is 

the set of points, and {II(X) [ X E fl} is the set of blocks, of a symmetric design 

D(~) having the parameters of PG(2en - 1, q). When q = 2, this is a Hadamard 

design. Clearly, X --> I-I(X) is a polarity of D(E), and X is in I-I(X). Thus, D(~) is 

a projective space if and only if G(~) -~ G(V) (where V is regarded as a K-space). 

Recall from (4.4i) that G('~) and G(V) are known to be nonisomorphic if q is 

even and en >-_ 3. 

EXAMPLE 5.1. Desarguesian spreads. Let n = 1 and e _->3. If V = F 2, then 

((,~,/3), (% a ) )  = a s  - r 

The spread ~' consists of all 1-spaces over F. This produces a spread E, a 

strongly regular graph G(E) and a symmetric design D(~). We will prove some 

properties of G(E). 

(a) The group G = Sp(2, q ' ) =  SL(2, q ' )  acts on ~, and hence on G(S~). If 
M E E then its stabilizer GM has order q e (q e - -  1 )  and induces a cyclic group of 

order qe _ 1 on the space M. Thus, G is transitive on fL If X ~ 12 then Gx fixes 

every subspace of E(X). Thus, the permutation representations of G on P and 12 
are equivalent. 

(b) If  X -  Y and Y , (X)~Y, (Y) ,  then ]Lo(X, Y ) l < q  +1. 

PROOF. Let Z E Lo(X, Y ) -  {X, Y}. Then Z E X Y  by (3.3). Set x = X n y l  

and y = Y n X I. 

The spread ~ can be parametrized by F U {o0} as follows: ~ consists of the 

subspaces 

~[~1 = {(0,  u)lu E F } ;  :~[t]  = {(u,  tu)lu E F} for  t E F. 

Since G is 2-transitive on E, we may assume that E(X) = El0] and E(Y) = E[o0]. 
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Set x = ((a,  0)) and y = ((0, /3)) ,  where a/3 # 0. Recall that 
trace map. Then 

X = y ~ n X[0] -- {(u, 0) 1T(u/3) -- OL 

Y = x I N Y.[oo] = {(0, u)l T(ua)  = 0}. 

T : F - K  was the 

Since Z n ( x , y ) #  0. We may assume that (a , /3)E Z. Then X(Z)=X[/3 /a] ,  so 

Z = y• n X[/3/a] = {(u, u/31c~)l T(u/3) = 0}. 

Similarly, let ( ( 0 , / 3 ' ) ) ~ Y - { y }  (so T(a/3')=O), and form Z ' =  

{(u, uB'/c~) I T(u/3')= 0}. Then Z ' - Y  and Z ' <  x ~, so Z ' - Z  by (3.2). Set 

((0, OB /o~ )) = Z '~ n Z ;  here T( OB ) = 0. Since (0, 0/3 /o~ ) ~ Z 'l, if T(tzfl') = 0 then 

T(~O/3a-1 _ ~/3'~- '0) = 0. Thus O/3a-l- O/3'a-' -- k/3' for some k E K. 

Consequently, whenever /3 '~  K/3 and T(a/3') = O, T(fla/3'/(/3 - /3 '))  = 0 

(since T(/30) = 0). Setting 3' ---/3' - /3,  we see that T(oty) = 0 and 7 #  0 imply that 

T(ot:/32/t~7) = T(a/3(/3 + Y)/7) = 0 (since T(c~/3) = 0). Set ~b = ot2/32 and W = 

Ker T. Then W U {oo} is invariant under t ~ c~/t, as well as t ~ t + w for w E W. 

These permutations generate a subgroup of PGL(2, q e) transitive on W U {~}. 

However, [ W U {~}J = q* l ..~ 1 does not divide I PGL(2, qe)I since e > 3. This 

contradiction completes the proof. 

(c) PROPOSITION. (;(•) # G(V') for all V', and Aut G(E) = PFL(2, q e). 

PROOe. By (b), (3.3) and (3.4), G ( E ) # G ( V ' )  for all V', and AutG(X)--  

Aut G( V)x. Since FL(2e, q)x = FL(2, q e) (Dembowski [3, p. 32]), this proves (c). 

We now turn to the design D(E). 

(d) The partition E* (cf. (3.2)) of 1) is completely determined by the design 
D(E). For, if X #  Y let l(X, Y)  denote the intersection of all blocks containing X 

and Y. If E(X) = E(Y) then l(X, Y)  -- L(X,  Y)  by (3.3iii). If E ( X ) #  E(Y) then 

Il( X, Y)I < q + 1: when X -  Y, this follows from (c), while if X and Y are not 

joined it is proved exactly as in (c). (In fact, I I ( X , Y ) l = 2  whenever 

X ( X ) / X ( Y ) . )  

The set P can also be recovered from D(•). For, if M E X and B is any block, 

then B n M* = M* or x* for some x E M (by (3.3ii)). This also shows that M* 

inherits the structure of a projective space PG(e - 1, q) from D(E). In particular, 

the lines of M can be recovered. 

In fact, all lines of PG(2e - 1, q) can be determined. For, if x and y belong to 

different members of X, then x * n  y* lies in exactly q + 1 blocks, and their 

intersection contains exactly q + 1 sets z*: those z* such that z is in (x, y). 
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It is now easy to determine the automorphism group of D(E); this group does 
not quite coincide with Aut G(E). 

(e) Aut D(E) -= FL(2, q')/GF(q)*. 

PROOF. By (d) Aut D(E) =< PFL(2e, q)2 ~- FL(2, q" )/GF(q)*. Since Aut D(~) => 

Aut G(E), we only need to check that the transformation g :(a,/3)---~ (ot~,/3~) of 

V induces an automorphism of D(E) whenever ff E F*. 

Let X < 2[t], t E F. Then X = ~[t] n (0,/3)• = {(a, ta) I T(a/3) = 0} for some 
f l~0 .  Call X = X ( t , / 3 )  in this situation. Note that X(t,/3)s= 
{(a, tct)l T(a~'-l/3) = 0} = X(t,/3~-1). 

Consider W = {(0,/3) I T(/3) = 0} E I~. We have 

I I ( W )  = E,[oo]* U{X(t,/3)lt,/3 EF, T(/3)  = 0}, 

so that 

r i ( w ) ,  = u I t,/3 F, T(/3) = 0} = n ( W ' ) ,  

where W' = {(0, y) [ T(y~) = 0}. Since G centralizes g and is transitive on blocks, 

it follows that g induces an automorphism, as required. 

REMARg. The design D(E) has a remarkably rich structure. While it seems 

difficult to determine the size of each intersection of three blocks, it is easy to 

obtain Ill(X) n II(Y) tq l l (z)[  whenever E(X) = E(Y). 

EXAMPLE 5.2. Tits spreads. Let q" = 2 2I+1, e _>-3. The Suzuki group Sz(q') 

determines a spread E' of an Sp(4, q ' )  space (Tits [15]; Liineburg [11]). This 
produces a spread E of an Sp(4e, q) space V, as before. By (4.5), G(~)~G(V) .  
By (5.1c), the strongly regular graphs in (5.1) and (5.2) cannot be isomorphic. By 
(5.1e), the corresponding symmetric designs are also nonisomorphic. 

REMARK. Many further examples of symplectic spreads are known (Kantor 
[9, 10]), but the corresponding graphs do not seem particularly interesting. 

6. Orthogonal desarguesian spreads 

An f~l(2n +2 ,q )  space V can have a spread only if n is odd. If n _->5, 

examples of spreads are known only if q is even (Dillon [5]; Dye [6]; Kantor 

[9, 10]). These examples are much harder to compute with than the ones in (5.1). 

Only one type of example, called desarguesian in [9], seems halfway tractable 

computationally. Of course, if q = 2 then (4.5) can be applied to any ~ in order to 

deduce that G(E) ~ G(V). 



308 w . M .  KANTOR Isr. J. Math. 

Let q be even, and set F =  GF(q ' ) ,  K = GF(q), V = K ~ F ~ F ~ K  and 

Q(a,a,/3, b)=T(a/3)+ab, where T:F--->K is the trace map. Then X =  

{E[t] I t ~ F U {oo}} is the spread we will study in this section, where (for t E F)  

= {(0,0,/3, b ) l /3   F,b 

X[t] = {(a + T(tot), a, t2a + ta, T(ta))  I a E F, a E K}. 

There is a group PFL(2, q")  of transformations preserving Q and E, fixing 

((1,0,0,1)), and acting 3-transitively on X ([6], [10]). 

PROPOSITION 6.1. If n >=5 then G ( ~ ) # G ( V ) .  

We will describe three proofs of this fact. The first involves a reduction to the 

case q = 2: if G(X)---G(V), one can use a field automorphism in PFL(2, qn) in 

order to make this reduction. 

The second proof is group theoretic. If ~b : G(X)---> G(V)  is an isomorphism 

and G = PSL(2,q")  acts on E, then G* = ~b-IGtb acts on V and preserves the 

spread X* of (3.3). Moreover,  the orbits of G on II have lengths I~l and 

I t l l -  IX}, and hence G* has the same orbit lengths on P. This implies that G* 

cannot fix a 1-space of V. But this is impossible by Fong and Seitz [7, (4A)]. 

The third proof is computational. While it is very unpleasant, it at least has the 

advantage of producing Aut G(X). 

PROPOSITION 6.2. If  n => 5 then Aut G(~) = (Aut G(V)~z. 

PROOF. In view of (3.4), it suffices to prove that every set L (X, Y) with X ~ Y 
and X(X)#  X(Y) consists only o[ X and Y. Assume that Z ~ L(X, Y ) - { X ,  Y}. 
By (3.3iv), Z E XY. 

Set x = X O Y~ and y = X l tq Y. Since PFL(2, q n) acts 2-transitively on X, we 
may assume that v , (X)=X[0]  and X(y)=X[oo] .  Let x = ((p, m0,0))  and y = 

((0, 0.,/3, b)), where T(lr/3) = pb. We will concentrate on the case b # 0, since the 

case b = 0 is similar but slightly simpler. We may assume that (p, ~r,/3, b) E Z < 

X[s] for some s E F. Then T(slr) = b and/3 = s21r + s(p + b). 

Fix t E F - { O , s } .  Set w=((i+T(tO),O, t20+ti, T( tO)))=X[t]nz"  with 

i E K  ahd 0 E F .  If pT(sa)+ T(~r(s2a + s a ) ) = 0  then 

(a + T(sa),a, s2a + sa, T(sot))EX[s]nx~= Z < w ~, 

so that 

(i + T(tO))T(sr,)+ (a + T(sa))T(tO)+ T(O(s2a + sa))+ T(a(t20 + ti)) = O. 

Since T(crsa)= ab and b #  0, this reduces to T(ar)= 0 for all a, where 
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(6.3) r = (ps + 7rs2)T(sO + tO) + b{i(s + t) + O(s 2 + t2)} = 0. 

Here, T(sO + tO)~ O. (For otherwise, i + O(s + t) = 0 and hence i + 0  = 0 and 

0 = 0.) From T(Or) = 0 we then deduce T((ps + 7rs2)O) = b{i + T(sO + tO)}; thus, 

i is known in (6.3). 

Choose any A E F such that A~ 0 and T(A/3) = T(At) = T(At2"rr)  = 0. Then 
(0, A, 0, 0) E y i n ~[~] = X, (0, 0, At 2, 0) ~ x I o E[0] = Y, and (0, A, At 2, 0) ~ ~[t]. 

Set W = (0, A, 0, 0) • O E[t] = (0, A, At 2, 0) • O ~[t]. Then W - X, Y, so W - Z. 

Thus, w E (0, A, 0, 0) ~, so T(A (t20 + ti)) = 0 for each choice of A. Consequently, 

t20 + ti E (/3, t, t2~r). Elimination of 0 in (6.3) produces a nontrivial polynomial 

of degree _-< 4 over F having t as a root and depending upon p, It,/3, b, s and at 

most four elements of K. Thus, the number of elements t is q" - 2 _-< 4q 5. This is 

a contradiction unless n = 5 and q = 2 or 4; a bit more care eliminates these 

cases as well. 

A very similar argument also handles the case b = 0. 

R~MARKS. The preceding technical proof can be summarized as follows. 

Let Z E X Y - { X , Y } ,  x = X O Y •  and y = X  ~ o Y .  Let M E E -  

{Y~(X),Y.(Y),Y~(Z)}. Set w = Z + O M ,  so w E ( x , y )  • Let w E ( x ' , y ' ) ,  where 

x ' E X  and y ' ~  Y. If v E M O ( x , y )  • but v ~ x  '~, then u E(x l ,  y~) with x, E X  
and y~ E Y, and xi ~ O M is joined to X and Y but not to Z. The proof consisted 

of showing that M O (x, y)• ~ M n (x, x ' ) l  for "most"  choices of M. 

Presumably, there are better approaches than the preceding computational 

one. We have not performed similar computations with other l~+(2n + 2 , q )  

spreads, nor with any of the known II-(2m + 2, q) spreads. 

7. Partial geometries 

Throughout this section, V will have type lV(2m,2). Let 

corresponding quadratic form, and set N = {(v)[ Q(v)  = 1}. 

Let ~ and fl be as in w 

Q denote the 

THEOREM 7.1. I f  q = 2 or 3, then (N, ~,  .L) is a partial geometry. 

This result is due to DeClerck, Dye and Thas [2; 14]. The resulting partial 

geometry will be called pg(~). 
The point-graph of pg(~) is the graph with vertex set N, two different members 

of N being joined if and only if they are incident with a member  of ~ .  The 

line-graph of pg(~) is defined similarly. From (7.1), it is easy to deduce 
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COROLLARY 7.2. (i) The point-graph of pg(~) is (N, Z) if q = 2 and (N, Z) if 
q = 3 .  

(ii) The line-graph of pg(~) is the graph complementary to G(`2). 

The point- and line-graphs of a partial geometry are strongly regular. In view 

of (i), GF(2) and GF(3) are the only fields for which this construction produces a 

partial geometry. On the other hand, (ii) is the motivation for much of this paper. 

From (7.2i) we deduce 

COROLLARY 7.3. Let `2 and `2' be spreads of V. Then any isomorphism 
pg(`2)--~ pg(`2') is induced by an orthogonal transformation of V sending `2 to "2'. 
(In particular Aut(pg(`2)) is the stabilizer of `2 in the projective orthogonal group.) 

Finally, by Patterson [12] and Kantor [9, w167 10, w we have 

COROLLARY 7.4. (i) If m = 4 and q = 2 or 3, then pg(~) is unique up to 
isomorphism. 

(ii) If  m - 1 is a composite odd integer, then there are at least three nonisomor- 
phic partial geometries pg(~) arising [rom an [F(2m, 2) space, all having the same 
parameters. 

No examples with m > 4 and q = 3 are presently known. 

8. Partial geometries in 1)+(8,2) space 

Haemers  and van Lint [8] constructed a partial geometry pg(HvL) as follows. 

Take Z 9, and define a quadratic form O as in the proof of (4.3). Let V denote 

the set of vectors of even weight. Then V becomes an IF(8, 2) space. The group 

G = PFL(2, 8) acts on this space by permuting coordinates. Haemers and van 

Lint construct 120 cocliques of size 9, lying in G-orbits of sizes 1, 63 and 56. Then 

pg(HvL) has P as point set and these 120 cocliques as line set. 

THEOREM 8.1. pg(HvL ) is isomorphic to the dual of pg(`2), where `2 is a 

spread of V. 

This can be proved either using triality or coset geometries. We will use the 

latter approach. 

If E is a spread in V, then it is preserved by a group of orthogonal 

transformations isomorphic to Ag. The stabilizer of a nonsingular point b of V 
gives us a group G = PFL(2, 8) preserving ~ (compare Dye [6]; Kantor [9]; and 

w Moreover,  G is 3-transitive on `2, and has exactly 3 orbits on the set N 

defined in w (namely, {b}, b ~ tq N - {b} of size 63 and N - b • of size 56) and 2 on 
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I~ (namely, X~ = {b • N M I M E E} and lq - X~). If c U N - {b}, then I Gc I = 24 or 

27, and Gc has an orbit on Xc of length 8 or 9, respectively. Thus, G acts on the 

dual of pg(X) so as to satisfy the following conditions: 

(i) G fixes a line L, and induces PFL(2, 8) on it. 

(ii) G is transitive on the points not on L ; the stabilizer of such a point p has 

order 12. 

(iii) Gp has two orbits of lines on p: those meeting L and those not. 

(iv) If L '  is a line other than L, then I G v [ =  24 or 27. 

By construction, pg(HvL) has the same properties. 

Let A < G with IA 1= 12; then A -~ A4 and all such subgroups are conjugate 

(since the centralizer of an involution in PFL(2, 8) is Z2 x A4). Let S, T < G with 

IS I= 24 and IT[ = 27. Set L = PG(1, 8). Define a geometry as follows (where 

g~G) .  
Points: points x of L ;  cosets Ag. 
Lines: L ;  cosets Sg; cosets Tg. 
Incidence: xlL; xlSgr fixes xS-1; AglSg'C:~AgNSg'#O; and 

AgITg' r Ag M Tg' # 0. 
In view of the flag-transitivity implicit in (iii), Dembowski  [3, p. 15] implies 

that both pg(E) and pg(HvL) are isomorphic to the above coset geometry. 

REMARKS. (1) If E is the desarguesian spread of an l)+(2n + 2, 2) space, then 

pg(X) can be described as a coset geometry in a very similar manner. In this more 
general case, G = PFL(E,2n), IAI = 2n-In, IS I= 2~n, I TI = (2 n + 1)n and L = 

PGtl ,2n).  

(2) The dual of the partial geometry constructed by Cohen [1] is undoubtedly 

also isomorphic to pg(X). That partial geometry has the correct point-graph (cf. 

(7.2i)), and Aut  pg(X) has a subgroup As which seems to behave like the As in 

[1]. However,  the complicated construction [1] makes the required identification 
difficult. 

9. Some designs 

The partial geometries in w can be described as (ILN • C),  where N l =  

{b~lb E N} is a suitable set of hyperplanes. In this section, we will present a 

similar construction for some less interesting objects. 

Let V be an fl(2m + 1, 2) space, and set q = 2 m. Let ~ and fl be as usual, and 

let N- denote the set of all hyperplanes of type l~-(2m, 2). 

PROPOSITION 9.1. (N-,fl ,  D )  is a design with parameters v =~q(q-1), k = 
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�89 b = q2 _ 1, r = q + 1 a n d  ;t = 1. Its line graph is the graph c o m p l e m e n t a r y  to 

PROOF. The values of v, k, b, and r are easy to compute. If X and Y are 
distinct, nonadjacent members of f~, then (X, Y) has type f~+(2m - 2 ,  2), so that 

(X, Y)• has type ~(3,2), and hence has exactly one anisotropic 2-space. Thus, 
any two distinct members of N- have in common at most one element of IL A 
standard counting argument completes the proof. 
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